Real-time View-Space Grass Generation
for Video Games using GAN

Authors
Prashant Karn
Anju Chhetri
Tripti Sharma

Pramesh Shrestha

Abstract

Real-time visual element generation using GAN is a
field gaining momentum in recent years. This project
particularly explores the generation of grass in video
games in the view-space, by using a Neural Rendering
model. Since there is not much past work or data
available related to this, the scope of this project
includes specification of this model optimisation
problem, creation of a mock game, highly efficient
procedurally generated grass using traditional
methods, a system to automatically generate datasets
as required with a speed sufficient enough to supply
data faster than can be used for training, a real-time
testing environment using an integrated neural
rendering engine within the render-pipeline, and
research work conducting experiments using GAN.
The target of this research work is to achieve
subjectively good looking grass that can run at more
than 10 fps. With the dataset generator and mock
game working properly as verified by unit and
relationship testing, the research work involved over a
hundred experiments exploring five major neural
network architectures seen in past work and created in
accordance to insights gained from experiments in this
project - UNet, Style Transfer, ResNet blocks, SPADE
ResNet blocks, and Hybrid models. Many of these
experiments produced models that successfully
achieved the target of being real-time. Applications of
this type of research include better rejection of
unneeded information such as shape and identity of
grass blades during their rendering, infinite LOD in
procedural generation, and faster rendering of
complex visual elements more resilient to factors such
as number and density.

Introduction

Grass for a long time has been symbolic of a simple,
ordinary aspect in reality that has been impossibly
difficult to portray realistically in video games. The
thousands to millions of grass blades stand out

compared to other game elements. There is obviously
redundant information being stored in valuable
memory space with grass, which during game-play is
easy enough to forget about, and the exact location of
every single grass blade does not matter.

A compression approach therefore called for which
selectively reduces storage of such irrelevant
information, and is able to generate believable grass in
the view without storing each grass element in world
space. We explore the use of Generative Adversarial
Networks (GAN) to achieve this.

Related work

Neural rendering [1] offers limiting grass-based
information within the view-space, in one or multiple
frame-buffers, which could be orders of magnitude
cheaper than procedural grass. Generative Adversarial
Networks (GANs) are a big part of this, being able to
synthesise complex imagery. They have reached the
stage of aiding procedural generation in 3D
environments already [2]. Stable Diffusion [3] and
similar image-to-image generation models can already
take a simple, flat rendition of grass and add detail
with depth to it. Wang et al. [4] present a way to
replace all of the lighting and most of the rendering
pipeline with GANSs, to generate every visual element
on the screen using Neural Rendering. Richter et al.
[5] take a different approach, style-transferring
realistic visuals on top of fully rendered video game
scenes. Mittermueller et al. [6] provide some lighting
information, and various maps, including untextured
or lightly textured albedo, normal and depth map of a
scene along with semantic labels on view-space
segments to their CycleGAN based model to generate
a realistic scene, combining the two approaches into a
realistic, but crucially not yet real-time, application.
The natural next step is real-time application of
Neural Rendering.

Spatially Adaptive normalisation (SPADE) [7]
proposes an alternative to the traditional U-Net
architecture to generate images with only half as many
layers while still retaining input information, which
has been crucial for achieving real-time processing.

Approach

We chose a subset of Mittermueller et al. [6]’s list of
types of inputs and generated a final dataset with
about 15,000 entries through random movement in a
mock video game from the point of view of a playable
character, in a world full of procedurally generated



grass. Each dataset entry consists of three input and
four output images, all of dimensions 800x480.

Fig: Constituents of the dataset:

2

s View without grass, with world-space noise
(top-left)

% Depth map of the view (top-right)

% Normals map of the land (bottom-right)

Bottom-Left is a real-time output produced in our

Unity environment through our Generator, with a

character overlayed.

Fig: Procedurally generated grass used as example
outputs in our dataset

We passed the three input images, which add up to an
800x480x7 tensor into a fine tuned Generator network
consisting of a mixture of Half-SPADE Resblks and
up-convolution layers. Two architectures produced
results better than the rest, one suited for fast
generation, and another for good quality.

|

Down Scaling

[
] g

v, ) _— - ) -
g HALF |y { HALF HALF ‘
[128/ '{ SPADE 128 SPADE 64 SPADE
128 - 64

N )

t

7
Outpu
3
128

Up Convolyion, Resnet )
Block

Fig: Fast Network Architecture

Half-SPADE Resblks are an altered version of SPADE
Resblks [7] with the second SPADE layer omitted for

faster processing, and considering the fact that image
segmentation is trivial for our inputs, and primary
concern is information retention. No noise was added
at any point of the generation - instead, a fixed
world-space noise was added to the input image.

Our high quality model consists of a single
Half-SPADE Resblk with the others replaced with two
generic Resnet Blocks each, as well as an extra Resnet
Block near the end.

Fig.: High Quality Network Architecture

We used multiple PatchNets with spectral
normalisation working at different input sizes as the
discriminators, averaging their results while training
our GAN. Training was done for 100 epochs each.
Within the scope of this paper, we trained the best
version of each network among different parameter
counts based on different channel depths. The final
model was run in Unity, using Barracuda, on an
Nvidia GTX 1650 laptop GPU.

Results

The results produced by our best Fast Network, which
consisted of 1.8 million parameters, yielded real-time
speeds of 10 to 12 frames per second. There was no
fast flicker, only gradual morphs in the grass shapes
when moving around in the grassy landscape.

Fig: Images produced by our Fast Generator



Our fastest High Quality Network model produced
better looking grass than the best Fast Network results
in terms of distinction of grass blades. However, these
blades appeared much more directionally biassed and
repetitive. It ran at around 8 frames per second.

Fig: Result produced by our fastest acceptable High
Quality Network

The results produced by our best High Quality
Network, which consisted of over 10.5 million
parameters, yielded real-time speeds of 3 to 5 frames
per second. The grass produced had less morph and is
far more visually similar to the example procedural
grass, having much fewer artefacts and much more
distinctly visible grass blades.

Fig: Result produced by our best High Quality
Network

In all cases, Artefacts such as grid-patterns, border
patterns and general repetitiveness was observed due
to the usage of a smaller number of layers.

Conclusion

We successfully used Generative Adversarial
Networks (GANs) to train a generator network to
produce acceptable looking grass in the view-space of
a video game in real-time at around 10 frames per
second. This performance is not good enough to
replace world-space procedural grass generation
methods, however it successfully performs selective
removal of the redundant information for such grass
such as consistency of existence of individual grass
blades. With further room for development, this could

become a viable technology to perform such selective
compression tasks for real-time generation of video
game elements.

Future Work

There is potential for real time generation of grass
using diffusion, using training techniques such as one
presented in [Refer Diffusion
Distillation — Stability AI]. We expect to reduce our
repetitiveness issues and pattern artefacts using
Diffusion models, and real-time generation using them
seems to be on the horizon.

to Adversarial

References

[1] Tiwari, A., & Fried, O. (n.d.). State of the art on
Neural Rendering. Retrieved December 26, 2022, from
https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/cgf.1402
2

[2] Wulff-Jensen, A., Rant, N.N., Mpller, T.N.,
Billeskov, J.A. (2018). Deep Convolutional Generative
Adversarial Network for Procedural 3D Landscape
Generation Based on DEM. In A. Brooks, E. Brooks, & N.
Vidakis (Eds.), Interactivity, Game Creation, Design,
Learning, and Innovation. ArtsIT DLI 2017 2017. Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol 229

(pp. 95-105). Springer.
https://doi.org/10.1007/978-3-319-76908-0_9
[3] Stable Diffusion 2-1 - a Hugging Face Space by

stabilityai. (n.d.). Retrieved December 26, 2022, from
https://huggingface.co/spaces/stabilityai/stable-diffusion

[4] Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., &
Catanzaro, B. (2018). High-resolution image synthesis and
semantic manipulation with conditional gans. In 2018
IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp- 5589-5597). IEEE.
https://doi.org/10.1109/cvpr.2018.00917
[5] Cignoni, P., Scopigno, R., & Tarini, M. (2005). A

simple normal enhancement technique for interactive
non-photorealistic renderings. Computers & Graphics,
29(1), 125-133. https://doi.org/10.1016/j.cag.2004.11.012

[6] Mittermueller, M., Ye, Z., & Hlavacs, H. (2022).
Est-Gan: Enhancing style transfer gans with intermediate
game render passes. In 2022 IEEE Conference on Games
(CoG) (pp. 1-8). IEEE.
https://doi.org/10.1109/c0g51982.2022.9893673

[71Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019).
Semantic Image Synthesis with Spatially-Adaptive
Normalization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 2337-2346).


https://stability.ai/research/adversarial-diffusion-distillation
https://stability.ai/research/adversarial-diffusion-distillation
https://doi.org/10.1109/cog51982.2022.9893673

